Global Attractors for a Semilinear Hyperbolic Equation in Viscielasticity
نویسندگان
چکیده
A semilinear partial differential equation of hyperbolic type with a convolution term describing simple viscoelastic materials with fading memory is considered. Ž . Regarding the past history memory of the displacement as a new variable, the equation is transformed into a dynamical system in a suitable Hilbert space. The dissipation is extremely weak, and it is all contained in the memory term. Longtime behavior of solutions is analyzed. In particular, in the autonomous case, the existence of a global attractor for solutions is achieved. 2001 Academic Press
منابع مشابه
Orbit Equivalence of Global Attractors of Semilinear Parabolic Differential Equations
We consider global attractors Af of dissipative parabolic equations ut = uxx + f(x, u, ux) on the unit interval 0 ≤ x ≤ 1 with Neumann boundary conditions. A permutation πf is defined by the two orderings of the set of (hyperbolic) equilibrium solutions ut ≡ 0 according to their respective values at the two boundary points x = 0 and x = 1. We prove that two global attractors, Af and Ag, are glo...
متن کاملOrbit equivalence of global attractors of semilinear parabolic di erential equations
We consider global attractors Af of dissipative parabolic equations ut = uxx + f(x; u; ux) on the unit interval 0 x 1 with Neumann boundary conditions. A permutation f is de ned by the two orderings of the set of (hyperbolic) equilibrium solutions ut 0 according to their respective values at the two boundary points x = 0 and x = 1: We prove that two global attractors, Af and Ag, are globally C0...
متن کاملExistence and Continuity of Global Attractors for a Degenerate Semilinear Parabolic Equation
In this article, we study the existence and the upper semicontinuity with respect to the nonlinearity and the shape of the domain of global attractors for a semilinear degenerate parabolic equation involving the Grushin operator.
متن کاملOrbit Equivalence of Global Attractors for S1-Equivariant Parabolic Equations
We consider the global attractor Af for the semiflow generated by a scalar semilinear parabolic equation of the form ut = uxx + f(u, ux), defined on the circle, x ∈ S. Using a characterization of the period maps for planar Hamiltonian systems of the form u′′ + g(u) = 0 we discuss questions related to the topological equivalence between global attractors.
متن کاملGlobal Attractors for Degenerate Parabolic Equations without Uniqueness
In this paper, using theory of attractors for multi-valued semiflows and semiprocesses, we prove the existence of compact attractor for a semilinear degenerate parabolic equation involving the Grushin operator in which the conditions imposed on the nonlinearity provide the global existence of a weak solution, but not uniqueness. Mathematics Subject Classification: 35B41, 35K65, 35D05
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001