Global Attractors for a Semilinear Hyperbolic Equation in Viscielasticity

نویسندگان

  • Claudio Giorgi
  • Jaime E. Munoz Rivera
  • Vittorino Pata
چکیده

A semilinear partial differential equation of hyperbolic type with a convolution term describing simple viscoelastic materials with fading memory is considered. Ž . Regarding the past history memory of the displacement as a new variable, the equation is transformed into a dynamical system in a suitable Hilbert space. The dissipation is extremely weak, and it is all contained in the memory term. Longtime behavior of solutions is analyzed. In particular, in the autonomous case, the existence of a global attractor for solutions is achieved. 2001 Academic Press

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orbit Equivalence of Global Attractors of Semilinear Parabolic Differential Equations

We consider global attractors Af of dissipative parabolic equations ut = uxx + f(x, u, ux) on the unit interval 0 ≤ x ≤ 1 with Neumann boundary conditions. A permutation πf is defined by the two orderings of the set of (hyperbolic) equilibrium solutions ut ≡ 0 according to their respective values at the two boundary points x = 0 and x = 1. We prove that two global attractors, Af and Ag, are glo...

متن کامل

Orbit equivalence of global attractors of semilinear parabolic di erential equations

We consider global attractors Af of dissipative parabolic equations ut = uxx + f(x; u; ux) on the unit interval 0 x 1 with Neumann boundary conditions. A permutation f is de ned by the two orderings of the set of (hyperbolic) equilibrium solutions ut 0 according to their respective values at the two boundary points x = 0 and x = 1: We prove that two global attractors, Af and Ag, are globally C0...

متن کامل

Existence and Continuity of Global Attractors for a Degenerate Semilinear Parabolic Equation

In this article, we study the existence and the upper semicontinuity with respect to the nonlinearity and the shape of the domain of global attractors for a semilinear degenerate parabolic equation involving the Grushin operator.

متن کامل

Orbit Equivalence of Global Attractors for S1-Equivariant Parabolic Equations

We consider the global attractor Af for the semiflow generated by a scalar semilinear parabolic equation of the form ut = uxx + f(u, ux), defined on the circle, x ∈ S. Using a characterization of the period maps for planar Hamiltonian systems of the form u′′ + g(u) = 0 we discuss questions related to the topological equivalence between global attractors.

متن کامل

Global Attractors for Degenerate Parabolic Equations without Uniqueness

In this paper, using theory of attractors for multi-valued semiflows and semiprocesses, we prove the existence of compact attractor for a semilinear degenerate parabolic equation involving the Grushin operator in which the conditions imposed on the nonlinearity provide the global existence of a weak solution, but not uniqueness. Mathematics Subject Classification: 35B41, 35K65, 35D05

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001